Investigations of the Spin Hamiltonian Parameters and the Local Structures of the Substitutional V⁴⁺ Centres in Rutile-Type MO_2 (M = Sn, Ti, Ge)

Shao-Yi Wu^{a,b}, Li-Hua Wei^a, Zhi-Hong Zhang^a, Xue-Feng Wang^a, and Ji-Zi Lin^a

 ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
^b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016,

Reprint requests to S-Y. W.; E-mail: shaoyi_wu@163.com

Z. Naturforsch. **63a**, 523 – 528 (2008); received October 22, 2007

P. R. China

The spin Hamiltonian parameters and the local structures of the substitutional V^{4+} centres in rutile-type MO_2 (M=Sn, Ti and Ge) are theoretically investigated from the perturbation formulas of these parameters for a $3d^1$ ion in a rhombically compressed octahedron. The oxygen octahedra around V^{4+} are found to transform from the original elongation on the host M^{4+} site to compression in the impurity centres due to the Jahn-Teller effect. The calculated spin Hamiltonian parameters based on the above local structures show good agreement with the experimental data.

Key words: Defect Structures; Electron Paramagnetic Resonance; Crystal- and Ligand-Fields; V⁴⁺; Rutile.